

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: DATA SCIENCE (18CS0541)

Course & Branch: B.Tech - CSE

Year &Sem: IV-B.Tech & I-Sem

Regulation: R18

UNIT –I INTRODUCTION TO R & DATA ANALYSIS

1	a	List the five main skills and behavioral characteristics of Data scientists.	[L1][CO1]	[2M]
	b	Give the difference between BI and Data science	[L4][CO1]	[2M]
	с	Sketch the typical analytic architecture.	[L3][CO1]	[2M]
	d	Define the window panes of RStudio GUI	[L1][CO1]	[2M]
	e	What is exploratory data analysis	[L1][CO1]	[2M]
2	a	Sketch Date Analytics Lifecycle diagram.	[L3][CO1]	[4M]
	b	Explain in detail each stages of Data Analytics Lifecycle	[L2][CO1]	[6M]
3		Illustrate in detail the data types of R.	[L3][C01]	[10M]
4	a	Expand and Distinguish between NOIR attributes	[L4][CO1]	[5M]
	b	Describe the Array function in R	[L2][CO1]	[5M]
5		Examine the functions used for Visualizing a Single Variable	[L3][CO5]	[10M]
6		Discriminate about the functions used for examining Multiple Variables	[L5][CO1]	[10M]
7		Give example and define the following function of R	[L2][CO1]	[10M]
		a) read()		
		b) head()		
		c) summary()		
		d) plot()		
		e) summary()		
8	a	Discuss the Data frames utilization in R	[L2][CO1]	[5M]
	b	Describe the List function in R	[L2][CO1]	[5M]
9	a	Define dirty data	[L1][CO5]	[2M]
	b	How dirty data can be detected in the data exploration phase with	[L2][CO5]	[8M]
		Visualizations		
10	a	Illustrate the importance of visualizing data before analysis	[L2][CO5]	[5M]
	b	Justify "Using visualization for data exploration is different from	[L6][CO5]	[5M]
		presenting results to stakeholders"		

UNIT –II STATISTICAL METHODS FOR EVALUATION & ASSOCIATION RULES

1 a	Define Hypothesis Testing		
		[L1][CO3]	[2M]
b	What is Power of test?	[L1][CO3]	[2M]
c	How the Sample Size and effect size are related	[L2][CO3]	[2M]
d	Mathematically define Confidence	[L1][CO3]	[2M]
e	What is meant by downward closure property	[L1][CO3]	[2M]
2 a	Differentiate Null Hypotheses and Alternative Hypotheses	[L4][CO3]	[5 M]
b	Examine the application property of Wilcoxon rank-sum test	[L3][CO3]	[5 M]
3	Discriminate about Difference of Means	[L5][CO2]	[10M]
4	Suppose everyone who visits a retail website gets one promotional offer	[L5][CO2]	[10M]
	or no promotion at all. We want to see if making a promotional offer		
	makes a difference. What statistical method would you recommend for		
	this analysis?		
5	Explain the following	[L2][CO2]	[10M]
	a) Student's t-test		
	b) Welch's t-test		
6 a	Define and Detail ANOVA.	[L1][CO3]	[5M]
b	How evaluation of Candidate Rules are done?	[L2][CO3]	[5M]
7 a	What is a type I error? What is a type II error? Is one always more	[L1][CO3]	[5 M]
	serious than the other? Why?		
b	Give the difference between Validation and Testing	[L4][CO5]	[5M]
8 a	State Apriori Algorithm	[L1][CO3]	[2M]
b	Explain Apriori Algorithm with example	[L2][CO3]	[8M]
9 a	List and Discuss the four measures of significance of Association rules	[L1][CO3]	[5M]
b	Give the Applications of Association Rules	[L1][CO3]	[5M]
10	Illustrate any five approaches to improve Apriori's efficiency when the	[L3][CO3]	[10M]
	dataset is large.		

UNIT –III	
REGRESSION & CLASSIFICATIO	Ν

1	•	What is Multio	allingarity?					[]]
1	а ь	What is Multicollinearity?					[L1][CO4]	[2M]
	b	Relate Ridge regression and Lasso regressionWhich two basic measures does the entropy methods select the most					[L1][CO4]	[2M]
	С		nost	[L1][CO4]	[2M]			
	1	informative attr					II 11/00/1	
	d	Define confusio					[L1][CO4]	[2M]
	e		cy? FPR and FNR		•••••	1	[L1][CO4]	[2M]
2		-	lytical technique	Linear Regres	ssion with its mode	el	[L2][CO4]	[10 M]
		description.			.			[10] []
3			owing with respec	ct to linear reg	gression		[L2][CO4]	[10M]
		a) Categorical V		momotomo				
			Intervals on the Pa		m 0			
			interval on the Explored terval on a Particular					
4	a	,	e of linear regress				[L6][CO4]	[3M]
-	a b		tic Regression Mo		tie regression.		[L0][CO4]	[7M]
5			ion Trees in detail		2		[L3][CO4]	
3	a L			*	е.			[5M]
	b	Explain the algorithm of decision tree					[L3][CO4]	[5M]
6		Intercept the decision trees algorithms					[L4][CO4]	[10M]
7	a	State Bayes' Th					[L1][CO4]	[2M]
	b				nsidering an exam		[L2][CO4]	[8M]
8			pick the most suita	able method f	or a given classific	cation	[L2][CO4]	[10M]
		problem?			• •			
9	a		4.5 and CART alg				[L4][CO4]	[4M]
	b				cision tree is done		[L5][CO4]	[4M]
	c	Give the two ap	proaches that help	p avoid over f	fitting in decision t	ree	[L2][CO4]	[2M]
		learning.					[L4][CO4]	
10		Consider the given confusion Matrix of Naïve Bayes from the Bank						[10M]
		Marketing Dataset						
		Predicted Class						
				Subscribed	Not Subscribed	Total		
			Subscribed	3	8	11		
		Actual Class	Not Subscribed	2	87	89		
		Total		5	95	100		
		Calculate the following defining them						
		a) Accuracy						
		b) TPR						
		c) FPR						
		d) FNR						
		e) Precision						

UNIT –IV
CLUSTERING & TIME SERIES ANALYSIS

1	a	What is clustering?	[L1][CO4]	[2M]
	b	State the advantage of using PAM.	[L1][CO4]	[2M]
	с	How hierarchical agglomerative clustering is different from density based	[L2][CO4]	[2M]
		clustering?		
	d	Define time series and give the goals of time series analysis	[L1][CO4]	[2M]
	e	List the various parts of ARIMA model	[L1][CO6]	[2M]
2		Illustrate the method to find k clusters from a collection of M objects	[L3][CO6]	[10M]
		with n attributes.	[L2][CO5]	
3	a	Explain any one case study for time series analysis		[5M]
	b	What is forecasting in association with time series. Explain		[5M]
4	a	Indicate when the time series $y_t^{\text{for t=1,2,3,}}$ is said to be stationary time	[L2][CO6]	[4M]
		series.		
	b	Express the stationary time series conditions in detail.	[L6][CO6]	[6M]
5		Discuss in detail each part of the ARIMA model	[L2][CO4]	[10M]
6	a	List and explain time series components	[L1][CO6]	[5M]
	b	Discriminate the steps involved in Box-Jenkins Methodology	[L5][CO6]	[5M]
7	a	What is meant by k-means	[L1][CO4]	[2M]
	b	Describe k-means algorithm to find k clusters	[L2][CO4]	[8M]
8		Correlate ARMA and ARIMA Models	[L4][CO6]	[10M]
9		Express the following	[L2][CO6]	[10M]
		a) Autocorrelation Function		
		b) Autoregressive Models		
10		List and describe Additional time series methods	[L2][CO6]	[10M]

UNIT –V TEXT ANALYSIS

1	_	What is tast analytics?		[3]/[]
1	a	What is text analytics?	[L1][CO6]	[2M]
	b	Define Porter's stemming algorithm.	[L1][CO6]	[2M]
	С	Define Confusion matrix.	[L1][CO6]	[2M]
	d	What is Topic modeling ?	[L1][CO6]	[2M]
	e	State what is meant by word cloud?	[L1][CO6]	[2M]
2		Explain the three important steps of the text analysis	[L2][CO6]	[10M]
3	a	Sketch the flow diagram of Text analysis process	[L5][CO6]	[4M]
	b	Illustrate in detail the steps involved in the process of Text Analysis	[L3][CO6]	[6M]
		done by organizations		
4	a	Define TFIDF.	[L1][CO6]	[2M]
	b	Describe the usage of TFIDF to compute the usefulness of each word in	[L2][CO6]	[8M]
		the texts.		
5		Explain how the data science team will categorize the reviews by topics	[L2][CO6]	[10M]
6		Illustrate the main challenges of text analysis	[L3][CO6]	[10M]
7	a	Define Topic model. Describe LDA.	[L2][CO6]	[5M]
	b	Justify the process of topic modeling simplification.	[L6][CO6]	[5M]
8		Explain the following	[L3][CO6]	[10M]
		a) Tokenization		
		b) Case folding		
9	a	Explain how categorizing documents by topics is done.	[L2][CO6]	[6M]
	b	Interpret the procedure used in data science to gain insights into	[L3][CO6]	[6M]
		customer opinions		_
10	a	What is meant by sentiment analysis	[L1][CO6]	[2M]
	b	Discriminate the methods used for sentiment analysis	[L5][CO6]	[8M]

Prepared by: Mrs. R Priyadarshini Associate Professor